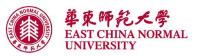


Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective (NIPS 25 Spotlight)

Reporter: Xingjian Wu

A PHD from ECNU

Time Series Forecasting



➤ Time series records temporal data from sensors in real-world cyber-physical systems.

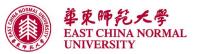
Multivariate Time Series Forecasting aims to predict the next F future timestamps, formulated as $Y = \langle X_{:,T+1}, \cdots, X_{:,T+F} \rangle \in \mathbb{R}^{N \times F}$ based on the historical time series $X = \langle X_{:,1}, \cdots, X_{:,T} \rangle \in \mathbb{R}^{N \times T}$ with N channels and T timestamps.

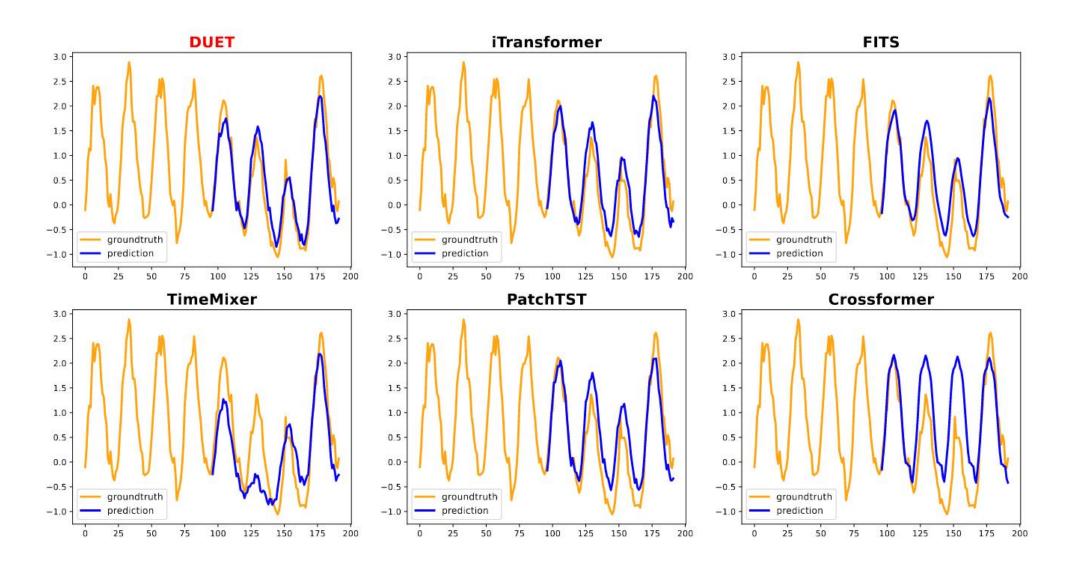
➤ Differences from classical regression tasks:

- > The underlying principes:
- ➤ Somewhat self-supervised (like NLP tasks).

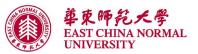
➤ Learn to evolve key patterns within past observations.

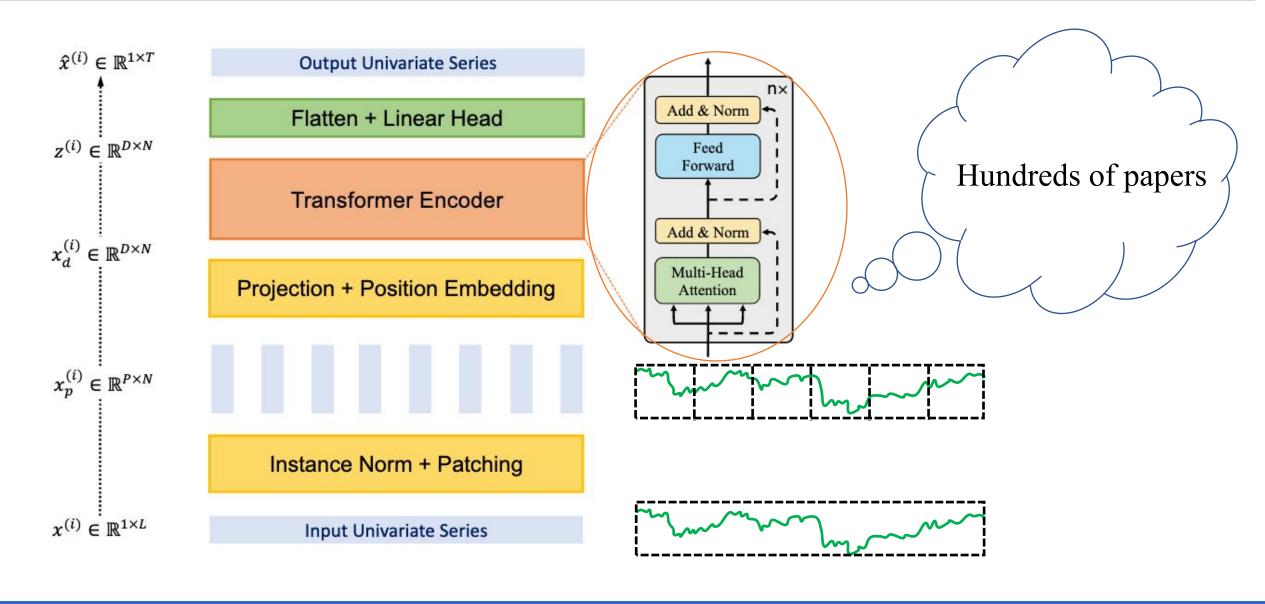
Forecasting is the evolution of proper patterns



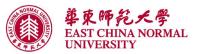


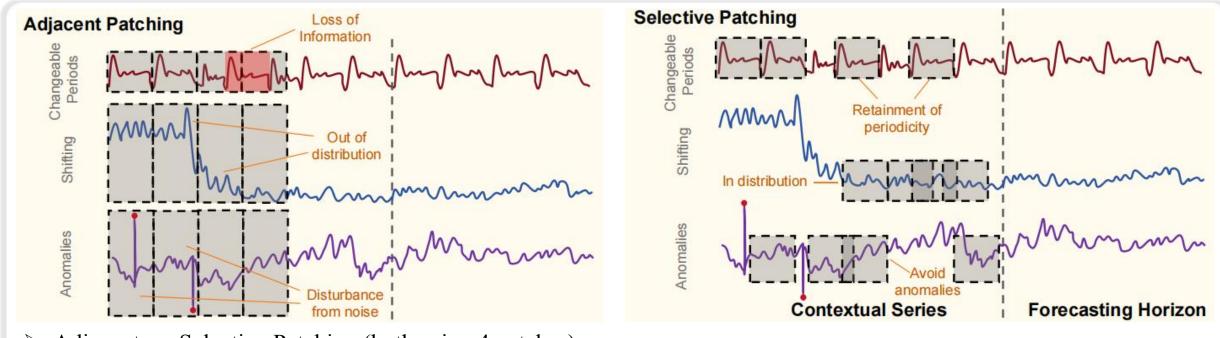
Patch-based Forecasting Models





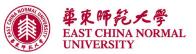
Motivation: Directly Evolve or Select then Evolve?

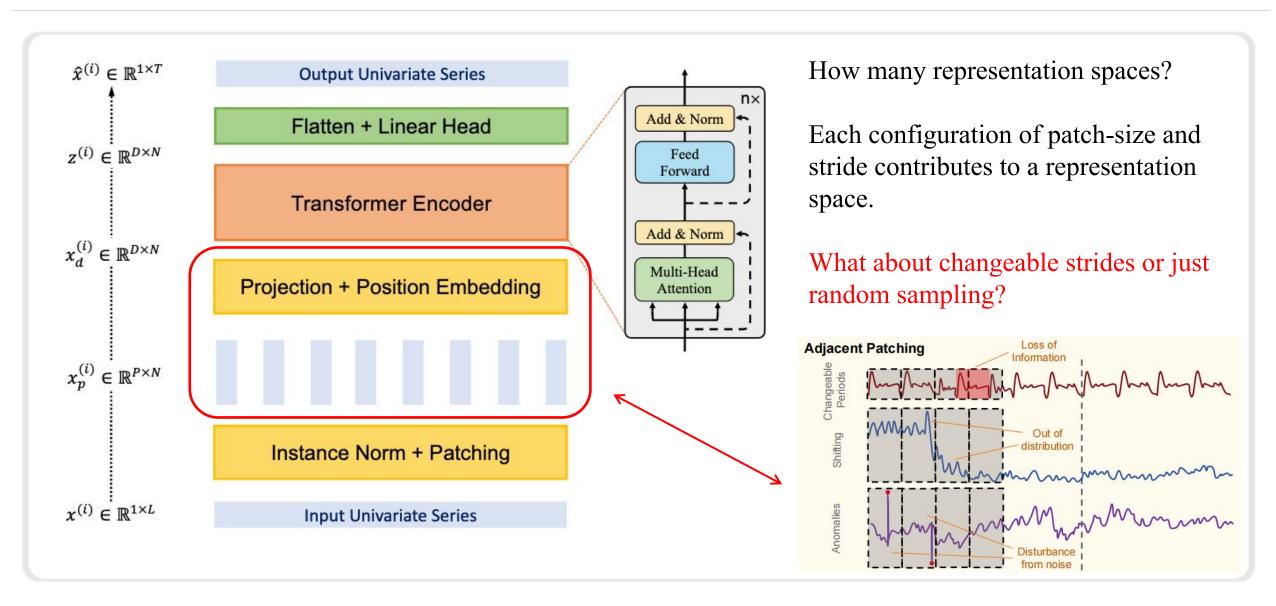




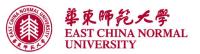
- ➤ Adjacent vs. Selective Patching (both using 4 patches)
 - Adjacent patching partitions time series into adjacent patches, lacking flexibility. Selective patching automatically select most relevant sub-series as patches.
 - ➤ The upper part shows examples that conventional adjacent patching may include harmful information, thus hindering the forecasting performance.
 - ➤ The lower part shows the selected patches that are more relevant for making the corresponding forecasting, demonstrating the flexibility that selective patches offer.

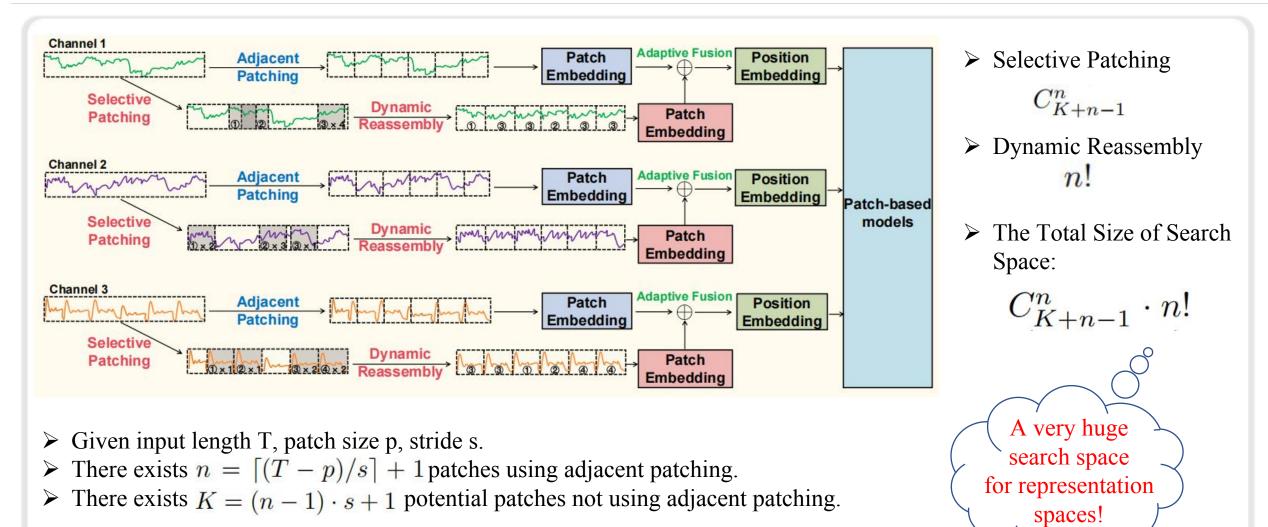
Representation Spaces



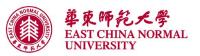


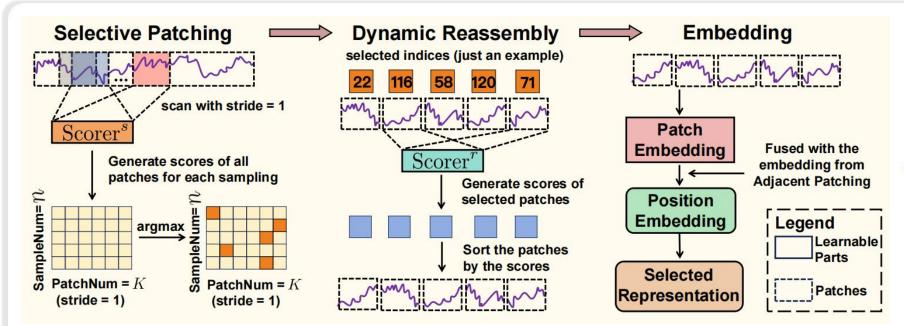
Overview: Selective Representation Space (SRS)





Methodology: "Sort as Search"





Selective Patching

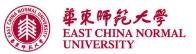
$$\begin{aligned} & \operatorname{Scorer}^s := \mathbb{R}^{N \times K \times p} \to \mathbb{R}^{N \times K \times n}, \\ & \mathcal{S}^s = \operatorname{Scorer}^s(\mathcal{P}'), \mathcal{I}^s = \operatorname{Argmax}(\mathcal{S}^s), \\ & \mathcal{S}^s_{max} = \mathcal{S}^s[\mathcal{I}^s], \mathcal{S}^s_{inv} = \operatorname{detach}(1/\mathcal{S}^s_{max}), \\ & \mathcal{P}^s_{max} = \mathcal{P}'[\mathcal{I}^s], E^s = \mathcal{S}^s_{max} \odot \mathcal{S}^s_{inv}, \\ & \tilde{\mathcal{P}}^s_{\max} = \mathcal{P}^s_{max} \odot E^s, \end{aligned}$$

Dynamic Reassembly

$$\begin{aligned} \operatorname{Scorer}^r &:= \mathbb{R}^{N \times n \times p} \to \mathbb{R}^{N \times n}, \\ \mathcal{S}^r &= \operatorname{Scorer}^r(\tilde{\mathcal{P}}^s_{max}), \mathcal{I}^r = \operatorname{Argsort}(\mathcal{S}^r), \\ \mathcal{S}^r_{sort} &= \mathcal{S}^r[\mathcal{I}^r], \mathcal{S}^r_{inv} = \operatorname{detach}(1/\mathcal{S}^r_{sort}), \\ \mathcal{P}^r_{sort} &= \tilde{\mathcal{P}}^s_{max}[\mathcal{I}^r], E^r = \mathcal{S}^r_{sort} \odot \mathcal{S}^r_{inv}, \\ \tilde{\mathcal{P}} &= \mathcal{P}^r_{sort} \odot E^r, \end{aligned}$$

- C_{K+n-1}^n Independently selecting n times from K candidates based on some criterions.
- \triangleright Reranking n selected patches based on some criterions. n!
- ➤ Adaptively fusing the embeddings of SRS and adjacent patching.

SRSNet: A simple yet effective baseline



Datasets	ET	Γh1	ET	Γh2	ET	Γm1	ET	Γm2	Wea	ther	Elect	ricity	So	lar	Tra	ffic
Metrics	mse	mae	mse	mae	mse	mae										
FEDformer [2022]	0.433	0.454	0.406	0.438	0.567	0.519	0.335	0.380	0.312	0.356	0.219	0.330	0.641	0.628	0.620	0.382
Stationary [2022]	0.667	0.568	0.377	0.419	0.531	0.472	0.384	0.390	0.287	0.310	0.194	0.295	0.390	0.387	0.622	0.340
DLinear [2023]	0.430	0.443	0.470	0.468	0.356	0.378	0.259	0.324	0.242	0.295	0.167	0.264	0.224	0.286	0.418	0.287
TimesNet [2023]	0.468	0.459	0.390	0.417	0.408	0.415	0.292	0.331	0.255	0.282	0.190	0.284	0.211	0.281	0.617	0.327
Crossformer [2023]	0.439	0.461	0.894	0.680	0.464	0.456	0.501	0.505	0.232	0.294	0.171	0.263	0.205	0.232	0.522	0.282
PatchTST [2023]	0.419	0.436	0.351	0.395	0.349	0.381	0.256	0.314	0.224	0.262	0.171	0.270	0.200	0.284	0.397	0.275
TimeMixer [2024]	0.427	0.441	0.347	0.394	0.356	0.380	0.257	0.318	0.225	0.263	0.185	0.284	0.203	0.261	0.410	0.279
iTransformer [2024]	0.440	0.445	0.359	0.396	0.347	0.378	0.258	0.318	0.232	0.270	0.163	0.258	0.202	0.260	0.397	0.281
Amplifier [2025]	0.421	0.433	0.356	0.402	0.353	0.379	0.256	0.318	0.223	0.264	0.163	0.256	0.202	0.256	0.417	0.290
TimeKAN [2025]	0.409	0.427	0.350	0.397	0.344	0.380	0.260	0.318	0.226	0.268	0.164	0.258	0.198	0.263	0.420	0.286
SRSNet	0.404	0.424	0.334	0.385	0.351	0.378	0.252	0.314	0.226	0.266	0.161	0.254	0.183	0.239	0.392	0.270

Dat	asets	E'	TTh 1	Solar		
Me	trics	Memory (MB)	Training Time (s)	Memory (MB)	Training Time (s)	
Linear	DLinear	828	1.28	815	15.66	
Linear	Amplifer	596	1.78	715		
CNN	TimesNet	2,846	14.95	13,141	1812.46	
	FEDformer	8,190	64.83	3,751	227.45	
	Stationary	18,386	40.22	18,529	156.27	
Transformer	Crossformer	3,976	17.13	16,375	205.60	
	PatchTST	1,404	2.49	26,777	137.60	
	iTransformer	722	4.14	1,015	20.66	
MLP	TimeMixer	1,394	7.49	20,602	107.15	
	TimeKAN	1,456	5.50	13,109	326.38	
	SRSNet	1,012	2.27	6,301	56.149	

Table 1: Multivariate forecasting average results with forecasting horizons $F \in \{96, 192, 336, 720\}$ for the datasets.

Table 2: Efficiency comparison between SRSNet and other baselines on ETTh1 and Solar datasets

- > SRSNet achieves state-of-the-art performance compared with recent advanced models.
- > SRSNet possesses high efficiency, i.e., fast training speed and low memory occupation.

SRS: A plug-and-play module

Datasets	ETTh1		ETTm2		So	olar	Traffic	
Metrics	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
MLP	0.430	0.451	0.273	0.336	0.219	0.277	0.413	0.284
+ SRS	0.404	0.424	0.252	0.315	0.183	0.239	0.392	0.270
Improve	6.05%	6.06%	7.70%	6.31%	16.08%	13.47%	5.26%	4.88%
PatchTST	0.419	0.436	0.256	0.314	0.200	0.284	0.397	0.275
+ SRS	0.404	0.426	0.249	0.307	0.182	0.251	0.386	0.266
Improve	3.48%	2.20%	3.00%	2.33%	8.87%	11.13%	2.74%	3.34%
Crossformer	0.439	0.461	0.501	0.505	0.205	0.232	0.522	0.282
+ SRS	0.432	0.455	0.454	0.462	0.193	0.225	0.512	0.274
Improve	1.55%	1.45%	9.83%	8.22%	5.66%	2.92%	1.85%	2.84%
PatchMLP	0.435	0.443	0.261	0.322	0.193	0.250	0.413	0.287
+ SRS	0.422	0.436	0.253	0.315	0.179	0.242	0.402	0.277
Improve	2.99%	1.55%	2.94%	2.31%	7.00%	3.11%	2.57%	3.41 %
xPatch	0.416	0.429	0.253	0.308	0.186	0.210	0.398	0.248
+ SRS	0.406	0.422	0.244	0.303	0.179	0.204	0.389	0.240
Improve	2.38%	1.66%	3.59%	1.86%	4.01%	2.61%	2.17%	3.38%

Table 3: Five models, i.e., MLP, PatchTST, Crossformer, PatchMLP, xPatch, are considered to show the effectiveness of SRS to work as a plugin

Datasets	Variants	Memory (MB)	Inference (s)	Training (s)	MACs (G)
	PatchTST	2,837	5.076	5.131	16.214
ETTh1	+SRS	2,907	5.722	5.763	16.905
	Overhead	+2.47%	+12.73%	+12.31%	+4.26%
	Crossformer	4,011	27.503	32.613	56.280
	+SRS	4,159	30.311	35.276	56.625
	Overhead	+3.69%	+10.21%	+8.17%	+0.61%
Solar	PatchTST	27,822.08	84.231	88.714	600.261
	+SRS	29,767.68	95.200	101.981	613.790
	Overhead	+6.99%	+13.02%	+14.95%	+2.25%
	Crossformer	17,355	79.031	82.472	61.822
	+SRS	18,978	86.674	90.268	62.174
	Overhead	+9.35%	+9.67%	+9.45%	+0.57%

Table 4: Efficiency analysis of the SRS module.

- ➤ About 5% 15% improvement on classical patch-based models.
- > SRS possesses high efficiency, introducing small overload.

Showcases



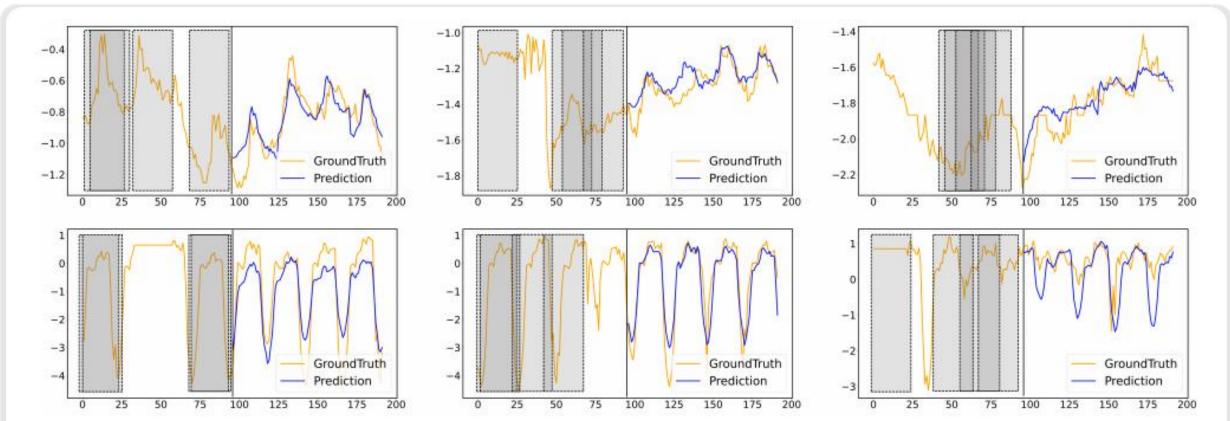
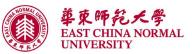


Figure 1: Visualization of input-96-predict-96 results on the ETTh1 dataset. SRSNet effectively processes the special cases with the help of SRS module. The grey rectangles are the selected patches with the size of 24.

Showcases



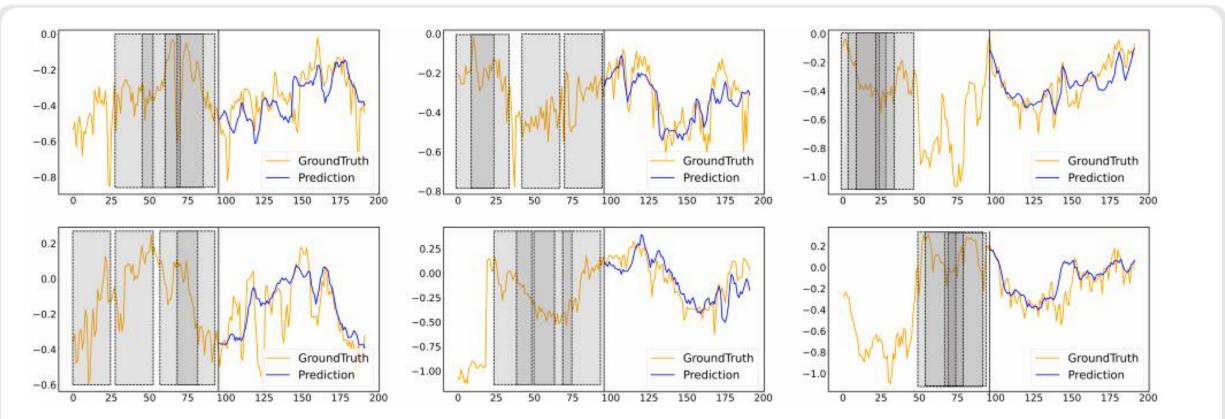
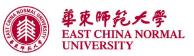


Figure 2: Visualization of input-96-predict-96 results on the ETTm2 dataset. SRSNet effectively processes the special cases with the help of SRS module. The grey rectangles are the selected patches with the size of 24.

Showcases



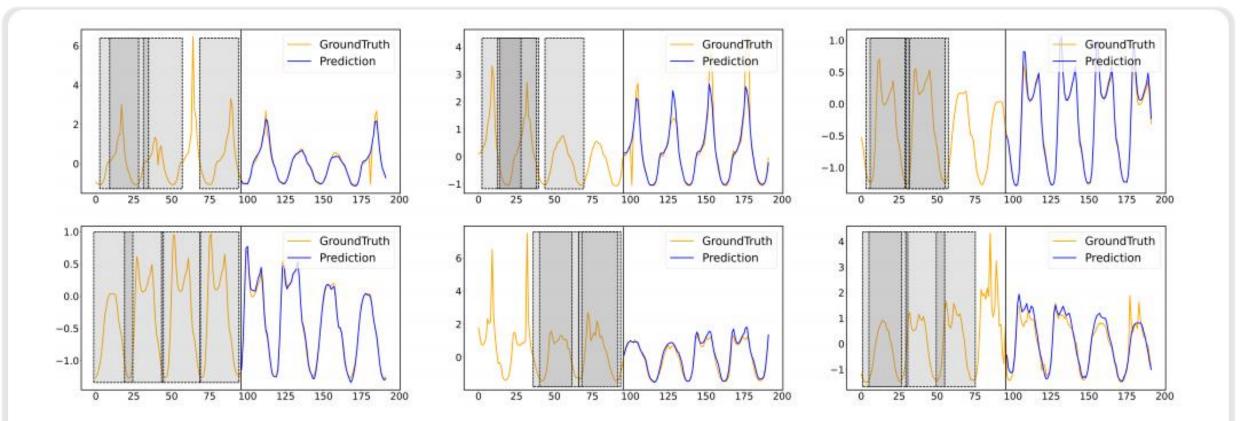


Figure 2: Visualization of input-96-predict-96 results on the Traffic dataset. SRSNet effectively processes the special cases with the help of SRS module. The grey rectangles are the selected patches with the size of 24.

Thank you!