Accepted Papers

AAAI 2026 Oral
sym

Rethinking Irregular Time Series Forecasting: A Simple yet Effective Baseline

Xvyuan Liu*, Xiangfei Qiu*, Xingjian Wu*, Zhengyu Li, Chenjuan Guo, Jilin Hu#, Bin Yang

Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence (AAAI), 2026. CCF A.

Accepted as an Oral paper (Top 4%).

[Paper] | [Project]

NeurIPS 2025 Spotlight
sym

Enhancing Time Series Forecasting through Selective Representation Spaces: A Patch Perspective

Xingjian Wu, Xiangfei Qiu, Hanyin Cheng, Zhengyu Li, Jilin Hu, Chenjuan Guo, Bin Yang#

Conference on Neural Information Processing Systems (NeurIPS), 2025. CCF A.

Accepted as a Spotlight poster (Top 3.2%).

[Paper] | [Slides] | [Project]

NeurIPS 2025
sym

Decomposition-based Loss Function for Time Series Forecasting

Xiangfei Qiu, Xingjian Wu, Hanyin Cheng, Xvyuan Liu, Chenjuan Guo, Jilin Hu#, Bin Yang

Conference on Neural Information Processing Systems (NeurIPS), 2025. CCF A.

[Paper] | [Project]

ICML 2025 Spotlight
sym

K2VAE: A Koopman-Kalman Enhanced Variational AutoEncoder for Probabilistic Time Series Forecasting

Xingjian Wu*, Xiangfei Qiu*, Hongfan Gao, Jilin Hu, Bin Yang#, Chenjuan Guo

International Conference on Machine Learning (ICML), 2025. CCF A.

Accepted as a Spotlight poster (Top 2.6%).

[Paper] | [Slides] | [Project]

PVLDB 2025
sym

TAB: Unified Benchmarking of Time Series Anomaly Detection Methods

Xiangfei Qiu, Zhe Li, Wanghui Qiu, Shiyan Hu, Lekui Zhou, Xingjian Wu, Zhengyu Li Chenjuan Guo, Aoying Zhou, Zhenli Sheng, Jilin Hu#, Christian S. Jensen, Bin Yang

International Conference on Very Large Databases (PVLDB), 2025. CCF A.

[Paper] | [Project]

ICLR 2025
sym

CATCH: Channel-Aware Multivariate Time Series Anomaly Detection via Frequency Patching

Xingjian Wu, Xiangfei Qiu, Zhengyu Li, Yihang Wang, Jilin Hu, Chenjuan Guo, Hui Xiong, Bin Yang#

International Conference on Learning Representations (ICLR), 2025. CORE A*.

[Paper] | [Slides] | [Project]

ICDE 2025
sym

EasyTime: Time Series Forecasting Made Easy

Xiangfei Qiu*, Xiuwen Li*, Ruiyang Pang*, Zhicheng Pan*, Xingjian Wu*, Liu Yang*, Jilin Hu, Yang Shu, Xuesong Lu, Chengcheng Yang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen and Bin Yang#.

IEEE International Conference on Data Engineering (ICDE), 2025. CCF A.

[Paper] | [Project]

SIGKDD 2025
sym

DUET: Dual Clustering Enhanced Multivariate Time Series Forecasting

Xiangfei Qiu, Xingjian Wu, Yan Lin, Chenjuan Guo, Jilin Hu#, Bin Yang

ACM Knowledge Discovery and Data Mining (SIGKDD), 2025. CCF A.

One of the most influential papers of SIGKDD 2025.

[Paper] | [Project]

PVLDB 2025
sym

FACTS: Fully Automated Correlated Time Series Forecasting in Minutes

Xinle Wu, Xingjian Wu, Dalin Zhang, Miao Zhang, Chenjuan Guo, Bin Yang#, Christian S. Jensen

International Conference on Very Large Databases (PVLDB), 2025. CCF A.

[Paper] | [Project]

VLDBJ 2024
sym

AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting

Xinle Wu*, Xingjian Wu*, Bin Yang#, Lekui Zhou, Chenjuan Guo, Xiangfei Qiu, Jilin Hu, Zhenli Sheng, Christian S. Jensen

VLDB Journal (VLDBJ), 2024. CCF A.

[Paper] | [Project]

PVLDB 2024 Best Paper
sym

TFB: Towards Comprehensive and Fair Benchmarking of Time Series Forecasting Methods

Xiangfei Qiu, Jilin Hu#, Lekui Zhou, Xingjian Wu, Junyang Du, Buang Zhang, Chenjuan Guo, Aoying Zhou, Christian S. Jensen, Zhenli Sheng, Bin Yang

International Conference on Very Large Databases (PVLDB), 2024. CCF A.

Best Research Paper Award Nomination of PVLDB 2024.

[Paper] | [Project]

Preprints

Preprint
sym

Aurora: Towards Universal Generative Multimodal Time Series Forecasting

Xingjian Wu, Jianxin Jin, Wanghui Qiu, Peng Chen, Yang Shu, Bin Yang, Chenjuan Guo#

arXiv preprint, 2025.

Preprint
sym

Unlocking the Power of Mixture-of-Experts for Task-Aware Time Series Analytics

Xingjian Wu, Zhengyu Li, Hanyin Cheng, Xiangfei Qiu, Jilin Hu, Chenjuan Guo, Bin Yang#

arXiv preprint, 2025.

Preprint
sym

Multi-Scale Spatial-Temporal Hypergraph Network with Lead-Lag Structures for Stock Time Series Forecasting

Xiangfei Qiu, Liu Yang, Hanyin Cheng, Xingjian Wu, Rongjia Wu, Zhigang Zhang, Ding Tu, Chenjuan Guo, Bin Yang, Christian S. Jensen, Jilin Hu#

arXiv preprint, 2025.

Preprint
sym

ASTGI: Adaptive Spatio-Temporal Graph Interactions for Irregular Multivariate Time Series Forecasting

Xvyuan Liu, Xiangfei Qiu, Hanyin Cheng, Xingjian Wu, Chenjuan Guo, Bin Yang, Jilin Hu#

arXiv preprint, 2025.

Preprint
sym

DAG: A Dual Causal Network for Time Series Forecasting with Exogenous Variables

Xiangfei Qiu, Yuhan Zhu, Zhengyu Li, Hanyin Cheng, Xingjian Wu, Chenjuan Guo, Bin Yang, Jilin Hu#

arXiv preprint, 2025.

Preprint
sym

A Comprehensive Survey of Deep Learning for Multivariate Time Series Forecasting: A Channel Strategy Perspective

Xiangfei Qiu, Hanyin Cheng, Xingjian Wu, Jilin Hu, Chenjuan Guo

arXiv preprint, 2025.

[Paper] | [Project]

*Equal Contribution, # Corresponding Author. More working drafts / preprints under review will be released later ⌛️